\begin{tabbing} (\=(((RW (RepeatC (UnfoldsC ``wellfounded guard so\_apply``) ANDTHENC AbReduceC) 0) \+ \\[0ex] \\[0ex]CollapseTHEN (D 0))$\cdot$) \\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n) ((first\_nat 1:n \-\\[0ex]),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$ \end{tabbing}